【鸥盟·经典回顾】赵亮数学2017年高考押题成功!2018将继续照亮你的数学之路!-凝粹
赵亮老师个人介绍
赵亮,数学与应用数学专业硕士研究生,原太原新东方数学项目负责人、教研室主任,集团优秀教师、校级优秀教师,教学与培训首席名师,山西省高考阅卷人,深知应试答题技巧、“偷分”技巧以及命题规律邪恶内涵漫画,授课风格更权威、更学术、更系统、更方法、更激情、更幽默。
教授课程:主要教授高中数学、自主招生考试、SAT数学考试等课程
授课模式:1、启发式教学、一题多解、多题一解教学方式,始终以方法为核心吕教主,突破常规,补充学校学不到的特殊解题方法与解题思想。
“独家模板式”教学:通过权威典例,分析题目条件结构,总结相应解题模板,掌握命题人命题命脉,配有相应练习,让学生课堂上即刻具有“应证”感,轻松练就举一反三的能力,以一题解百题,提分效果显著,太原市仅此独家授课模式。
自创“线下学习”跟踪模式:学生和家长需要扫码或通过好友邀请进入“赵亮老师学习营”微信群,接受线下课程跟踪,即每节课黑板上的板书内容会以照片的形式发到群里,以便学生复习回顾查缺补漏;学生在群里可以交流学习,老师会及时解答学生提出的问题;老师会在群里每周发优秀模拟试卷、专题方法小论文、试卷解析、微课视频等,增加课时量,拓展知识面。
自创“个性化学习”特色小班:“课堂+测试”两小时课堂教学模式,前半个小时对上节课所讲内容进行测试,由老师亲自命题并阅卷,掌握每位学生的学习问题,落实每节课所讲方法的熟练应用;前一个半小时授课讲解当堂课内容,并布置相应作业,而后在微信群中分享讲解视频,具有很强的“针对性”特点;学生有问必答,有答必懂,懂则必通;定时举行家长会,与家长交流孩子学习问题,关注孩子学习状态与学习态度,帮助其更快进步。
授课成绩:众多学子接受培训后如愿考入清华北大、人大复旦等多所名校,单科数学成绩多次几近满分,被誉为“数学最达人”,更是因其具有自信、活力、亲和等性格特点而深受广大家长和学生的尊崇与爱戴。
17年考情分析
18年备考策略
《2017年全国新课标I理科数学考情分析与2018年备考策略》
分析人:赵亮
一、2017年新课标高考I理科卷考点统计与押题对比
部分重难点真题与所押题目的对比
【真题】设x、y、z为正数,且,则()
A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z
【押题】【对立预测】已知函数,若成立,即,则最小值为()
A、B、C、D、
【真题】函数在单调递减,且为奇函数.若,则满足的的取值范围是()
A.B.C.D.
【押题】【对立预测2】已知函数是定义在R上的偶函数,且在区间上单调递增.若实数a满足,则a的取值范围是( C )
(A)(B)(C)(D)
15、【真题】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中
心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边
的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA船长哈洛克,△FAB,
使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)
的最大值为_______。
【押题】【高仿预测4】
【真题】17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
【押题】A、余弦定理+面积公式
1、在△ABC中,内角A,B,C的对边为a、b、c,已知。
(I)求角C的值。
(II)若c=2,且△ABC的面积为,求a、b
【真题】(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
【押题】7从某校的一次学料知识竞赛成绩中,随机抽取了50名同学的成绩,统计如下:
组别
(30,40)
(40,50)
(50,60)
(60.70)
(70,80)
(80,90)
(90,100)
频数
3
10
12
15
6
2
2
(Ⅰ)求这50名同学成绩的样本平均数(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由频数分布表可以认为,本次学科知识竞赛的成绩Z服从正态分布
,其中近似为样本平均数x.①利用该正态分布.求②某班级共有20名同学参加此次学科知识比赛,记X表示这20名同学中成绩超过74分的人数,利用①的结果,求EX.附:若,则
四、2017年新课标高考I卷试题分析
考点分布均匀合理,稳中有变
从统计表上来看,较2016年试题不难看出考点基本一致,题型上的变化也不大,甚至有一些完全相同的考点和题型形成反考,如集合、平面向量、解三角形、立体几何等,但相对于去年增加了简易逻辑,与复数相结合戏院凶座,几何概型、体积几何求最值、正态分布大题等;尤其是选择题的第12题,开放性很强,对能力要求较高,创新性也很不错,第16题考查特殊几何体最值,与圆的结合也是很独到的地方彭家声,让人耳目一新;解答题方面尤其是统计学大题,与实际问题结合很好玻璃窗的爱,并且考查了过去五年还未考过的正态分布,也是几年给学生必押的题型,对方案的评价也是近几年的热点,统计量的计算也是用尽心思,容易让学生难以招架,
五年还未考过的定值定不过理解题意后并不难做,完全体现了能力性;圆锥曲线这道大题的第二问也是考查了过去点问题,也是今年必押题目,所以今年的题考点分布合理,稳中有变。
题目难度系数设置合理,信度区分度较好
与往年相比较,题目难度分布还是先易后难,徐徐增加,有难点的题目也是非常鲜明,区分度大,有层次,底中高的分布与题量很合理,选择题1-10,填空题13-14不易拉开分数12题和16题在有限的时间内思考并做出来还是需要一定的能力和熟练度的,很好的体现了学生的分析能力和解决问题的能力,能够将学生水平合理划分开,信度区分度都很好。
注重基础、知识的交汇与综合
基础题非常明显,就只是单另考查该考点和该考点下的题型,注重了考纲中个基础要求,如10.11.12.15.16.21.22.23,都与其它知识进行了综合,特别是与不等式,函数,导数,直线与圆的结合,这也是平时练习时应该非常注重的综合点,这样在一个题的位置就可以联合考查多个知识点,既可以达到完整性,也可以考查学生的综合分析能力,这也是高考的必然要求谢高峰,我们平时在学习的时候,也要注重很多知识综合性的考查,提高自己分析问题解决问题的能力,不要只追求单一化的独立的专项知识,要学会联系地看问题。
合理渗入了数学方法和数学思想
几乎每一道数学题都深入了高中必须要掌握和应用的数学思想,数学思想在数学解题中体现的淋漓尽致,可以说灭有数学思想的数学题是没有灵魂的。在平时的数学学习中,我们也要不断的给学生提供重要的数学思想训练,这样才能从根本上提升学生的解题水平,达到举一反三的效果,迈克尔奥赫今年的高考题着重体现了数形结合、分类讨论、函数方程、构造转化等重要的数学思想,没有这些思想做支持,相比很难解出题目;还有就是很多数学题除了一般的解题方法之外,尤其是选择填空,会有更快更好的解题技巧,只有这样才能体现出选择填空的优势,才能真正意义上选拔出优秀的有能力的学生,今年的技巧主要体现在特值法、验证法、结论法、估值法等。
试卷追求创新和与实际问题的结合
近几年的高考题特别强调创新,不论是从题目本身还是从文化角度,如与古代文学的结合,与逻辑推理能力的结合等,还有就是与实际问题的结合,特别是概率统计这道大题,体现了数学在实际问题中的应用的重要性,更加强调了学生对理论知识本身的深刻理解南陵人才网,也要求学生对实际问题要求认识和了解,这样才能更好的体现出数学的魅力与价值密战峨眉,创新是永远不变的主题。
五、2018年高考备考策略与课程规划
备考策略
通过对近几年的高考分析,基本可以得出如下几点备考建议:
I)永远注重基础知识的夯实。从试卷中不难看出基础题还是占据了多半江山,1-10,13-14,17、18都是考查基本功,这也是试卷结构的要求。
II)在过硬的基础知识上,追求能力型学习,综合性学习,学习中不断的比较,总结,归类,纠错,巩固熟练,只有这样才能一步一个脚印稳步前行,才能从真正意义上取得进步,千万不能盲目追求快和量。
III)知己知彼,百战不殆。只有充分了解高考考试规律,高考考点,考点中的题型分类,注重对典型性和代表性的题目的学习和掌握,这样才能事半功倍,取得高效率。
IV)注重对解题技巧的积累和应用,不能什么样的题目都用一般方法解,要注重一题多解和多题一解的学习方向,加强对数学思想的培养,这样才能从根本上提升数学解题能力
V)一定要有计划的复习,先复习什么后复习什么,参考资料的选择,复习方法的摸索都是很重要的因素
VI)心态决定一切,要有一定的毅力和吃苦的精神。没有任何一个取得高考优异成绩的学生不是拼出来的,都是用汗水和泪水浇灌成的,在复习当中,必然会遇到心烦意乱,浮躁难安的时候,会遇到自己成绩不稳定的时候阿川阳志,而这个时候就是考验自己的时候,就是人与人拉开差距的关键点,拼的就是毅力,就是心态!
课程规划
针对往年的高考形式和经验平阳三中,提出如下复习规划:
暑假
2015年全国高考真题解析
+
高考代数(一)解题方法与技巧一轮复习
具体内容
1、2015年新课标+全国各省市真题解析+复习规划
2、高考代数之“函数”基本知识系统一轮复习
3、高考代数之“导数”基本知识系统一轮复习
4、高考代数之“三角函数”基本知识系统一轮复习
5、高考代数之“数列”基本知识系统一轮复习
6、高考数学思想——数形结合思想
7、高考数学思想——函数与方程思想
秋季
高考代数(二)解题方法与技巧二轮复习
+
高考几何(一)解题方法与技巧二轮复习
具体内容
1、高考代数之“函数”重难点解题技巧二轮复习
2、高考代数之“导数”重难点解题技巧二轮复习
3、高考代数之“三角函数”重难点解题技巧二轮复习
4、高考代数之“数列”重难点解题技巧二轮复习
5、高考代数之“直线”基本知识系统一轮复习
6、高考代数之“直线与圆”基本知识系统一轮复习
7、高考数学思想——换元思想
8、高考数学思想——整体构造思想
针对往年的高考形式和经验,提出如下复习规划:
寒假
高考几何(二)解题方法与技巧三轮复习
具体内容
1、高考几何之“直线与圆”重难点解题技巧三轮复习
2、高考几何之“椭圆”重难点解题技巧三轮复习
3、高考几何之“双曲线”重难点解题技巧三轮复习
4、高考几何之“抛物线”重难点解题技巧三轮复习
5、高考几何之“直线与圆”重难点解题技巧三轮复习
6、高考几何之“立体几何”重难点解题技巧三轮复习
春季
高考综合内容重难点突破四轮复习
+
高考各单项班、押题班
大纲
高考数学冲140分之"12种选择填空满分必备技巧"集训:特值法,极限法,估值法
注意:1、旨在基础之上的技巧突破,稳定之上的全面提速
2、重在以试卷中上等难度试题为典例进行分析析;
3、除一般解法外的快速特殊解法;
4、后续验证法,数形结合法,模型法,列表法以及大题模版会在春季单项班中展开集训,敬请期待
具体内容
1、2015年全国各省市高考真题+各省市模拟试卷优秀重难点试题四轮突破(9周)
2、高考数学冲140——“单选+填空”快速满分策略单项训练班
3、高考数学冲140——“数列”高分模板单项训练班
4、高考数学冲140——“解三角形”高分模板单项训练班
5、高考数学冲140——“立体几何”高分模板单项训练班
6、高考数学冲140——“圆锥曲线”高分模板单项训练班
7、高考数学冲140——“导数”高分模板单项训练班
8、高考数学冲140——考试锦囊+权威押题单项班
讲义介绍
第一部分:基本知识总结——会将高中重要的基本知识按照相互关系建立起统一的、条理的知识体系,方便学生快速掌握。
第二部分:典型例题递阶训练——按照每一个考点,每一个题型安排相应的经典题型,并且按照题目难度与题目的相似度分类,使学生循序渐进地掌握解题方法
第三部分:高考试题赏析与特训——讲义中会安排近年优秀的新课标或全国高考各省市高考真题,从中吸收解题经验,提早接触真题,有助于提高思维
第四部分:优秀自主真题赏析与特训——讲义中会安排近年优秀的自主真题,既可以方便于之后参与自主招生考试,而且还可以从中吸取很多的精湛的解题技巧。
课下追踪
1、设置了微信答疑群,开课后扫描讲义上的二维码,学生可以通过这个平台直接提问,老师会尽量抽时间答疑;老师还会发送各学校优秀考试卷、方法技巧论文供学生学习拓展;各种课程信息也会在群里发布绿色时空!
2、老师还会不时录制拓展教学视频供学生线下学习,根据上课内容会定时亲自命制试卷进行测试,及时发现学生问题并解决。学生欣喜若狂
鸥盟教育
电 话(高中部):18636805889/8998、0351-4885686
电 话(初中部):4885288、4885688、18649321889
地 址:青年路五中往北200米滨湖大厦7、8层。
乘车路线:25路青年路中段或省中医院下车;1路、611、859、866、 6路、10路等青年路口下车,向南步行950米。
赵亮老师个人介绍
赵亮,数学与应用数学专业硕士研究生,原太原新东方数学项目负责人、教研室主任,集团优秀教师、校级优秀教师,教学与培训首席名师,山西省高考阅卷人,深知应试答题技巧、“偷分”技巧以及命题规律邪恶内涵漫画,授课风格更权威、更学术、更系统、更方法、更激情、更幽默。
教授课程:主要教授高中数学、自主招生考试、SAT数学考试等课程
授课模式:1、启发式教学、一题多解、多题一解教学方式,始终以方法为核心吕教主,突破常规,补充学校学不到的特殊解题方法与解题思想。
“独家模板式”教学:通过权威典例,分析题目条件结构,总结相应解题模板,掌握命题人命题命脉,配有相应练习,让学生课堂上即刻具有“应证”感,轻松练就举一反三的能力,以一题解百题,提分效果显著,太原市仅此独家授课模式。
自创“线下学习”跟踪模式:学生和家长需要扫码或通过好友邀请进入“赵亮老师学习营”微信群,接受线下课程跟踪,即每节课黑板上的板书内容会以照片的形式发到群里,以便学生复习回顾查缺补漏;学生在群里可以交流学习,老师会及时解答学生提出的问题;老师会在群里每周发优秀模拟试卷、专题方法小论文、试卷解析、微课视频等,增加课时量,拓展知识面。
自创“个性化学习”特色小班:“课堂+测试”两小时课堂教学模式,前半个小时对上节课所讲内容进行测试,由老师亲自命题并阅卷,掌握每位学生的学习问题,落实每节课所讲方法的熟练应用;前一个半小时授课讲解当堂课内容,并布置相应作业,而后在微信群中分享讲解视频,具有很强的“针对性”特点;学生有问必答,有答必懂,懂则必通;定时举行家长会,与家长交流孩子学习问题,关注孩子学习状态与学习态度,帮助其更快进步。
授课成绩:众多学子接受培训后如愿考入清华北大、人大复旦等多所名校,单科数学成绩多次几近满分,被誉为“数学最达人”,更是因其具有自信、活力、亲和等性格特点而深受广大家长和学生的尊崇与爱戴。
17年考情分析
18年备考策略
《2017年全国新课标I理科数学考情分析与2018年备考策略》
分析人:赵亮
一、2017年新课标高考I理科卷考点统计与押题对比
部分重难点真题与所押题目的对比
【真题】设x、y、z为正数,且,则()
A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z
【押题】【对立预测】已知函数,若成立,即,则最小值为()
A、B、C、D、
【真题】函数在单调递减,且为奇函数.若,则满足的的取值范围是()
A.B.C.D.
【押题】【对立预测2】已知函数是定义在R上的偶函数,且在区间上单调递增.若实数a满足,则a的取值范围是( C )
(A)(B)(C)(D)
15、【真题】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中
心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边
的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA船长哈洛克,△FAB,
使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)
的最大值为_______。
【押题】【高仿预测4】
【真题】17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
【押题】A、余弦定理+面积公式
1、在△ABC中,内角A,B,C的对边为a、b、c,已知。
(I)求角C的值。
(II)若c=2,且△ABC的面积为,求a、b
【真题】(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
【押题】7从某校的一次学料知识竞赛成绩中,随机抽取了50名同学的成绩,统计如下:
组别
(30,40)
(40,50)
(50,60)
(60.70)
(70,80)
(80,90)
(90,100)
频数
3
10
12
15
6
2
2
(Ⅰ)求这50名同学成绩的样本平均数(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由频数分布表可以认为,本次学科知识竞赛的成绩Z服从正态分布
,其中近似为样本平均数x.①利用该正态分布.求②某班级共有20名同学参加此次学科知识比赛,记X表示这20名同学中成绩超过74分的人数,利用①的结果,求EX.附:若,则
四、2017年新课标高考I卷试题分析
考点分布均匀合理,稳中有变
从统计表上来看,较2016年试题不难看出考点基本一致,题型上的变化也不大,甚至有一些完全相同的考点和题型形成反考,如集合、平面向量、解三角形、立体几何等,但相对于去年增加了简易逻辑,与复数相结合戏院凶座,几何概型、体积几何求最值、正态分布大题等;尤其是选择题的第12题,开放性很强,对能力要求较高,创新性也很不错,第16题考查特殊几何体最值,与圆的结合也是很独到的地方彭家声,让人耳目一新;解答题方面尤其是统计学大题,与实际问题结合很好玻璃窗的爱,并且考查了过去五年还未考过的正态分布,也是几年给学生必押的题型,对方案的评价也是近几年的热点,统计量的计算也是用尽心思,容易让学生难以招架,
五年还未考过的定值定不过理解题意后并不难做,完全体现了能力性;圆锥曲线这道大题的第二问也是考查了过去点问题,也是今年必押题目,所以今年的题考点分布合理,稳中有变。
题目难度系数设置合理,信度区分度较好
与往年相比较,题目难度分布还是先易后难,徐徐增加,有难点的题目也是非常鲜明,区分度大,有层次,底中高的分布与题量很合理,选择题1-10,填空题13-14不易拉开分数12题和16题在有限的时间内思考并做出来还是需要一定的能力和熟练度的,很好的体现了学生的分析能力和解决问题的能力,能够将学生水平合理划分开,信度区分度都很好。
注重基础、知识的交汇与综合
基础题非常明显,就只是单另考查该考点和该考点下的题型,注重了考纲中个基础要求,如10.11.12.15.16.21.22.23,都与其它知识进行了综合,特别是与不等式,函数,导数,直线与圆的结合,这也是平时练习时应该非常注重的综合点,这样在一个题的位置就可以联合考查多个知识点,既可以达到完整性,也可以考查学生的综合分析能力,这也是高考的必然要求谢高峰,我们平时在学习的时候,也要注重很多知识综合性的考查,提高自己分析问题解决问题的能力,不要只追求单一化的独立的专项知识,要学会联系地看问题。
合理渗入了数学方法和数学思想
几乎每一道数学题都深入了高中必须要掌握和应用的数学思想,数学思想在数学解题中体现的淋漓尽致,可以说灭有数学思想的数学题是没有灵魂的。在平时的数学学习中,我们也要不断的给学生提供重要的数学思想训练,这样才能从根本上提升学生的解题水平,达到举一反三的效果,迈克尔奥赫今年的高考题着重体现了数形结合、分类讨论、函数方程、构造转化等重要的数学思想,没有这些思想做支持,相比很难解出题目;还有就是很多数学题除了一般的解题方法之外,尤其是选择填空,会有更快更好的解题技巧,只有这样才能体现出选择填空的优势,才能真正意义上选拔出优秀的有能力的学生,今年的技巧主要体现在特值法、验证法、结论法、估值法等。
试卷追求创新和与实际问题的结合
近几年的高考题特别强调创新,不论是从题目本身还是从文化角度,如与古代文学的结合,与逻辑推理能力的结合等,还有就是与实际问题的结合,特别是概率统计这道大题,体现了数学在实际问题中的应用的重要性,更加强调了学生对理论知识本身的深刻理解南陵人才网,也要求学生对实际问题要求认识和了解,这样才能更好的体现出数学的魅力与价值密战峨眉,创新是永远不变的主题。
五、2018年高考备考策略与课程规划
备考策略
通过对近几年的高考分析,基本可以得出如下几点备考建议:
I)永远注重基础知识的夯实。从试卷中不难看出基础题还是占据了多半江山,1-10,13-14,17、18都是考查基本功,这也是试卷结构的要求。
II)在过硬的基础知识上,追求能力型学习,综合性学习,学习中不断的比较,总结,归类,纠错,巩固熟练,只有这样才能一步一个脚印稳步前行,才能从真正意义上取得进步,千万不能盲目追求快和量。
III)知己知彼,百战不殆。只有充分了解高考考试规律,高考考点,考点中的题型分类,注重对典型性和代表性的题目的学习和掌握,这样才能事半功倍,取得高效率。
IV)注重对解题技巧的积累和应用,不能什么样的题目都用一般方法解,要注重一题多解和多题一解的学习方向,加强对数学思想的培养,这样才能从根本上提升数学解题能力
V)一定要有计划的复习,先复习什么后复习什么,参考资料的选择,复习方法的摸索都是很重要的因素
VI)心态决定一切,要有一定的毅力和吃苦的精神。没有任何一个取得高考优异成绩的学生不是拼出来的,都是用汗水和泪水浇灌成的,在复习当中,必然会遇到心烦意乱,浮躁难安的时候,会遇到自己成绩不稳定的时候阿川阳志,而这个时候就是考验自己的时候,就是人与人拉开差距的关键点,拼的就是毅力,就是心态!
课程规划
针对往年的高考形式和经验平阳三中,提出如下复习规划:
暑假
2015年全国高考真题解析
+
高考代数(一)解题方法与技巧一轮复习
具体内容
1、2015年新课标+全国各省市真题解析+复习规划
2、高考代数之“函数”基本知识系统一轮复习
3、高考代数之“导数”基本知识系统一轮复习
4、高考代数之“三角函数”基本知识系统一轮复习
5、高考代数之“数列”基本知识系统一轮复习
6、高考数学思想——数形结合思想
7、高考数学思想——函数与方程思想
秋季
高考代数(二)解题方法与技巧二轮复习
+
高考几何(一)解题方法与技巧二轮复习
具体内容
1、高考代数之“函数”重难点解题技巧二轮复习
2、高考代数之“导数”重难点解题技巧二轮复习
3、高考代数之“三角函数”重难点解题技巧二轮复习
4、高考代数之“数列”重难点解题技巧二轮复习
5、高考代数之“直线”基本知识系统一轮复习
6、高考代数之“直线与圆”基本知识系统一轮复习
7、高考数学思想——换元思想
8、高考数学思想——整体构造思想
针对往年的高考形式和经验,提出如下复习规划:
寒假
高考几何(二)解题方法与技巧三轮复习
具体内容
1、高考几何之“直线与圆”重难点解题技巧三轮复习
2、高考几何之“椭圆”重难点解题技巧三轮复习
3、高考几何之“双曲线”重难点解题技巧三轮复习
4、高考几何之“抛物线”重难点解题技巧三轮复习
5、高考几何之“直线与圆”重难点解题技巧三轮复习
6、高考几何之“立体几何”重难点解题技巧三轮复习
春季
高考综合内容重难点突破四轮复习
+
高考各单项班、押题班
大纲
高考数学冲140分之"12种选择填空满分必备技巧"集训:特值法,极限法,估值法
注意:1、旨在基础之上的技巧突破,稳定之上的全面提速
2、重在以试卷中上等难度试题为典例进行分析析;
3、除一般解法外的快速特殊解法;
4、后续验证法,数形结合法,模型法,列表法以及大题模版会在春季单项班中展开集训,敬请期待
具体内容
1、2015年全国各省市高考真题+各省市模拟试卷优秀重难点试题四轮突破(9周)
2、高考数学冲140——“单选+填空”快速满分策略单项训练班
3、高考数学冲140——“数列”高分模板单项训练班
4、高考数学冲140——“解三角形”高分模板单项训练班
5、高考数学冲140——“立体几何”高分模板单项训练班
6、高考数学冲140——“圆锥曲线”高分模板单项训练班
7、高考数学冲140——“导数”高分模板单项训练班
8、高考数学冲140——考试锦囊+权威押题单项班
讲义介绍
第一部分:基本知识总结——会将高中重要的基本知识按照相互关系建立起统一的、条理的知识体系,方便学生快速掌握。
第二部分:典型例题递阶训练——按照每一个考点,每一个题型安排相应的经典题型,并且按照题目难度与题目的相似度分类,使学生循序渐进地掌握解题方法
第三部分:高考试题赏析与特训——讲义中会安排近年优秀的新课标或全国高考各省市高考真题,从中吸收解题经验,提早接触真题,有助于提高思维
第四部分:优秀自主真题赏析与特训——讲义中会安排近年优秀的自主真题,既可以方便于之后参与自主招生考试,而且还可以从中吸取很多的精湛的解题技巧。
课下追踪
1、设置了微信答疑群,开课后扫描讲义上的二维码,学生可以通过这个平台直接提问,老师会尽量抽时间答疑;老师还会发送各学校优秀考试卷、方法技巧论文供学生学习拓展;各种课程信息也会在群里发布绿色时空!
2、老师还会不时录制拓展教学视频供学生线下学习,根据上课内容会定时亲自命制试卷进行测试,及时发现学生问题并解决。学生欣喜若狂
鸥盟教育
电 话(高中部):18636805889/8998、0351-4885686
电 话(初中部):4885288、4885688、18649321889
地 址:青年路五中往北200米滨湖大厦7、8层。
乘车路线:25路青年路中段或省中医院下车;1路、611、859、866、 6路、10路等青年路口下车,向南步行950米。